Criar clusters em R

Venho fazendo análise de dados con clusters em R e estes são os meus códigos y dataset.

Aqui estou identificando o número de clusters
setwd("/home/sergio/Dropbox/PhD/tesis/flujos1/")
r2 <- read.csv("rotas2.csv", h=T)
names(r2)
attach(r2)
library(NbClust)
library(fpc)
library(cluster)
library(ggplot2)
#Determinando el numero de clusters
#Distance Euclidean
NbClust(pro,diss="NULL", distance="euclidean",min.nc=2,
max.nc=8,method="ward",
index="ch",alphaBeale=0.1)
NbClust(pro,diss="NULL", distance="euclidean",min.nc=2,
max.nc=8,method="ward",
index="gamma",alphaBeale=0.1)
NbClust(pro,diss="NULL", distance="euclidean",min.nc=2,
max.nc=8,method="ward",
index="gplus",alphaBeale=0.1)
NbClust(pro,diss="NULL", distance="euclidean",min.nc=2,
max.nc=8,method="ward",
index="cindex",alphaBeale=0.1)
#8
#Distance maximum
NbClust(pro,diss="NULL", distance="maximum",min.nc=2,
max.nc=8,method="ward",
index="ch",alphaBeale=0.1)
NbClust(pro,diss="NULL", distance="maximum",min.nc=2,
max.nc=8,method="ward",
index="gamma",alphaBeale=0.1)
NbClust(pro,diss="NULL", distance="maximum",min.nc=2,
max.nc=8,method="ward",
index="gplus",alphaBeale=0.1)
NbClust(pro,diss="NULL", distance="maximum",min.nc=2,
max.nc=8,method="ward",
index="cindex",alphaBeale=0.1)
#Distance manhattan
NbClust(pro,diss="NULL", distance="manhattan",min.nc=2,
max.nc=8,method="ward",
index="ch",alphaBeale=0.1)
NbClust(pro,diss="NULL", distance="manhattan",min.nc=2,
max.nc=8,method="ward",
index="gamma",alphaBeale=0.1)
NbClust(pro,diss="NULL", distance="manhattan",min.nc=2,
max.nc=8,method="ward",
index="gplus",alphaBeale=0.1)
NbClust(pro,diss="NULL", distance="manhattan",min.nc=2,
max.nc=8,method="ward",
index="cindex",alphaBeale=0.1)
#Distance Euclidean, method single
NbClust(pro,diss="NULL", distance="euclidean",min.nc=2,
max.nc=8,method="single",
index="ch",alphaBeale=0.1)
NbClust(pro,diss="NULL", distance="euclidean",min.nc=2,
max.nc=8,method="single",
index="gamma",alphaBeale=0.1)
NbClust(pro,diss="NULL", distance="euclidean",min.nc=2,
max.nc=8,method="single",
index="gplus",alphaBeale=0.1)
NbClust(pro,diss="NULL", distance="euclidean",min.nc=2,
max.nc=8,method="single",
index="cindex",alphaBeale=0.1)
#Distance Euclidean, method complete
NbClust(pro,diss="NULL", distance="euclidean",min.nc=2,
max.nc=8,method="complete",
index="ch",alphaBeale=0.1)
NbClust(pro,diss="NULL", distance="euclidean",min.nc=2,
max.nc=8,method="complete",
index="gamma",alphaBeale=0.1)
NbClust(pro,diss="NULL", distance="euclidean",min.nc=2,
max.nc=8,method="complete",
index="gplus",alphaBeale=0.1)
NbClust(pro,diss="NULL", distance="euclidean",min.nc=2,
max.nc=8,method="complete",
index="cindex",alphaBeale=0.1)
#Distance Euclidean, method average
NbClust(med,diss="NULL", distance="euclidean",min.nc=2,
max.nc=8,method="average",
index="ch",alphaBeale=0.1)
NbClust(pro,diss="NULL", distance="euclidean",min.nc=2,
max.nc=8,method="average",
index="gamma",alphaBeale=0.1)
NbClust(pro,diss="NULL", distance="euclidean",min.nc=2,
max.nc=8,method="average",
index="gplus",alphaBeale=0.1)
NbClust(pro,diss="NULL", distance="euclidean",min.nc=2,
max.nc=8,method="average",
index="cindex",alphaBeale=0.1)
#8 Cluster
view raw gistfile1.r hosted with ❤ by GitHub

8

Então códigos gráficos jerárquiso são:


#Hierarchical Agglomerative
d <- dist(pro, method = "euclidean")
fit <- hclust(d, method="ward")
plot(fit)
rect.hclust(fit, k=8, border="red")
view raw cluster1.r hosted with ❤ by GitHub
E o gráfico é, e eu posso ver, especificamente, como meus dados são classificados

Comentarios

Entradas populares de este blog

ERROR: Grib2 file or date problem, stopping in edition_num. Can't ungrib.exe SOLVED

ARCGIS: Cálculo de pendiente entre puntos en el espacio xyz

WRF open_aux_u : error opening auxinput5_d02_2013-12-31_00:00:00 for reading. 100