Criar clusters em R
Venho fazendo análise de dados con clusters em R e estes são os meus códigos y dataset.
Aqui estou identificando o número de clusters
8
Então códigos gráficos jerárquiso são:
Aqui estou identificando o número de clusters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
setwd("/home/sergio/Dropbox/PhD/tesis/flujos1/") | |
r2 <- read.csv("rotas2.csv", h=T) | |
names(r2) | |
attach(r2) | |
library(NbClust) | |
library(fpc) | |
library(cluster) | |
library(ggplot2) | |
#Determinando el numero de clusters | |
#Distance Euclidean | |
NbClust(pro,diss="NULL", distance="euclidean",min.nc=2, | |
max.nc=8,method="ward", | |
index="ch",alphaBeale=0.1) | |
NbClust(pro,diss="NULL", distance="euclidean",min.nc=2, | |
max.nc=8,method="ward", | |
index="gamma",alphaBeale=0.1) | |
NbClust(pro,diss="NULL", distance="euclidean",min.nc=2, | |
max.nc=8,method="ward", | |
index="gplus",alphaBeale=0.1) | |
NbClust(pro,diss="NULL", distance="euclidean",min.nc=2, | |
max.nc=8,method="ward", | |
index="cindex",alphaBeale=0.1) | |
#8 | |
#Distance maximum | |
NbClust(pro,diss="NULL", distance="maximum",min.nc=2, | |
max.nc=8,method="ward", | |
index="ch",alphaBeale=0.1) | |
NbClust(pro,diss="NULL", distance="maximum",min.nc=2, | |
max.nc=8,method="ward", | |
index="gamma",alphaBeale=0.1) | |
NbClust(pro,diss="NULL", distance="maximum",min.nc=2, | |
max.nc=8,method="ward", | |
index="gplus",alphaBeale=0.1) | |
NbClust(pro,diss="NULL", distance="maximum",min.nc=2, | |
max.nc=8,method="ward", | |
index="cindex",alphaBeale=0.1) | |
#Distance manhattan | |
NbClust(pro,diss="NULL", distance="manhattan",min.nc=2, | |
max.nc=8,method="ward", | |
index="ch",alphaBeale=0.1) | |
NbClust(pro,diss="NULL", distance="manhattan",min.nc=2, | |
max.nc=8,method="ward", | |
index="gamma",alphaBeale=0.1) | |
NbClust(pro,diss="NULL", distance="manhattan",min.nc=2, | |
max.nc=8,method="ward", | |
index="gplus",alphaBeale=0.1) | |
NbClust(pro,diss="NULL", distance="manhattan",min.nc=2, | |
max.nc=8,method="ward", | |
index="cindex",alphaBeale=0.1) | |
#Distance Euclidean, method single | |
NbClust(pro,diss="NULL", distance="euclidean",min.nc=2, | |
max.nc=8,method="single", | |
index="ch",alphaBeale=0.1) | |
NbClust(pro,diss="NULL", distance="euclidean",min.nc=2, | |
max.nc=8,method="single", | |
index="gamma",alphaBeale=0.1) | |
NbClust(pro,diss="NULL", distance="euclidean",min.nc=2, | |
max.nc=8,method="single", | |
index="gplus",alphaBeale=0.1) | |
NbClust(pro,diss="NULL", distance="euclidean",min.nc=2, | |
max.nc=8,method="single", | |
index="cindex",alphaBeale=0.1) | |
#Distance Euclidean, method complete | |
NbClust(pro,diss="NULL", distance="euclidean",min.nc=2, | |
max.nc=8,method="complete", | |
index="ch",alphaBeale=0.1) | |
NbClust(pro,diss="NULL", distance="euclidean",min.nc=2, | |
max.nc=8,method="complete", | |
index="gamma",alphaBeale=0.1) | |
NbClust(pro,diss="NULL", distance="euclidean",min.nc=2, | |
max.nc=8,method="complete", | |
index="gplus",alphaBeale=0.1) | |
NbClust(pro,diss="NULL", distance="euclidean",min.nc=2, | |
max.nc=8,method="complete", | |
index="cindex",alphaBeale=0.1) | |
#Distance Euclidean, method average | |
NbClust(med,diss="NULL", distance="euclidean",min.nc=2, | |
max.nc=8,method="average", | |
index="ch",alphaBeale=0.1) | |
NbClust(pro,diss="NULL", distance="euclidean",min.nc=2, | |
max.nc=8,method="average", | |
index="gamma",alphaBeale=0.1) | |
NbClust(pro,diss="NULL", distance="euclidean",min.nc=2, | |
max.nc=8,method="average", | |
index="gplus",alphaBeale=0.1) | |
NbClust(pro,diss="NULL", distance="euclidean",min.nc=2, | |
max.nc=8,method="average", | |
index="cindex",alphaBeale=0.1) | |
#8 Cluster |
8
Então códigos gráficos jerárquiso são:
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#Hierarchical Agglomerative | |
d <- dist(pro, method = "euclidean") | |
fit <- hclust(d, method="ward") | |
plot(fit) | |
rect.hclust(fit, k=8, border="red") |
Comentarios
Publicar un comentario